Android APIs
public final class

ScriptIntrinsicBLAS

extends ScriptIntrinsic
java.lang.Object
   ↳ android.support.v8.renderscript.BaseObj
     ↳ android.support.v8.renderscript.Script
       ↳ android.support.v8.renderscript.ScriptIntrinsic
         ↳ android.support.v8.renderscript.ScriptIntrinsicBLAS

Class Overview

ScriptIntrinsicBLAS class provides high performance RenderScript APIs to BLAS. The BLAS (Basic Linear Algebra Subprograms) are routines that provide standard building blocks for performing basic vector and matrix operations. For detailed description of BLAS, please refer to http://www.netlib.org/blas/

Summary

Constants
int CONJ_TRANSPOSE
int LEFT
int LOWER
int NON_UNIT
int NO_TRANSPOSE
int RIGHT
int TRANSPOSE
int UNIT
int UPPER
Public Methods
void BNNM(Allocation A, int a_offset, Allocation B, int b_offset, Allocation C, int c_offset, int c_mult)
8-bit GEMM-like operation for neural networks: C = A * Transpose(B) Calculations are done in 1.10.21 fixed-point format for the final output, just before there's a shift down to drop the fractional parts.
void CGBMV(int TransA, int KL, int KU, Float2 alpha, Allocation A, Allocation X, int incX, Float2 beta, Allocation Y, int incY)
CGBMV performs one of the matrix-vector operations y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y or y := alpha*A**H*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d0/d75/cgbmv_8f.html Note: For a M*N matrix, the input Allocation should also be of size M*N (dimY = M, dimX = N), but only the region M*(KL+KU+1) will be referenced.
void CGEMM(int TransA, int TransB, Float2 alpha, Allocation A, Allocation B, Float2 beta, Allocation C)
CGEMM performs one of the matrix-matrix operations C := alpha*op(A)*op(B) + beta*C where op(X) is one of op(X) = X or op(X) = X**T or op(X) = X**H Details: http://www.netlib.org/lapack/explore-html/d6/d5b/cgemm_8f.html
void CGEMV(int TransA, Float2 alpha, Allocation A, Allocation X, int incX, Float2 beta, Allocation Y, int incY)
CGEMV performs one of the matrix-vector operations y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y or y := alpha*A**H*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d4/d8a/cgemv_8f.html
void CGERC(Float2 alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A)
CGERC performs the rank 1 operation A := alpha*x*y**H + A Details: http://www.netlib.org/lapack/explore-html/dd/d84/cgerc_8f.html
void CGERU(Float2 alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A)
CGERU performs the rank 1 operation A := alpha*x*y**T + A Details: http://www.netlib.org/lapack/explore-html/db/d5f/cgeru_8f.html
void CHBMV(int Uplo, int K, Float2 alpha, Allocation A, Allocation X, int incX, Float2 beta, Allocation Y, int incY)
CHBMV performs the matrix-vector operation y := alpha*A*x + beta*y Details: http://www.netlib.org/lapack/explore-html/db/dc2/chbmv_8f.html Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), but only the region N*(K+1) will be referenced.
void CHEMM(int Side, int Uplo, Float2 alpha, Allocation A, Allocation B, Float2 beta, Allocation C)
CHEMM performs one of the matrix-matrix operations C := alpha*A*B + beta*C or C := alpha*B*A + beta*C Details: http://www.netlib.org/lapack/explore-html/d3/d66/chemm_8f.html
void CHEMV(int Uplo, Float2 alpha, Allocation A, Allocation X, int incX, Float2 beta, Allocation Y, int incY)
CHEMV performs the matrix-vector operation y := alpha*A*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d7/d51/chemv_8f.html
void CHER(int Uplo, float alpha, Allocation X, int incX, Allocation A)
CHER performs the rank 1 operation A := alpha*x*x**H + A Details: http://www.netlib.org/lapack/explore-html/d3/d6d/cher_8f.html
void CHER2(int Uplo, Float2 alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A)
CHER2 performs the symmetric rank 2 operation A := alpha*x*y**H + alpha*y*x**H + A Details: http://www.netlib.org/lapack/explore-html/db/d87/cher2_8f.html
void CHER2K(int Uplo, int Trans, Float2 alpha, Allocation A, Allocation B, float beta, Allocation C)
CHER2K performs one of the hermitian rank 2k operations C := alpha*A*B**H + conjg( alpha )*B*A**H + beta*C or C := alpha*A**H*B + conjg( alpha )*B**H*A + beta*C Details: http://www.netlib.org/lapack/explore-html/d1/d82/cher2k_8f.html
void CHERK(int Uplo, int Trans, float alpha, Allocation A, float beta, Allocation C)
CHERK performs one of the hermitian rank k operations C := alpha*A*A**H + beta*C or C := alpha*A**H*A + beta*C Details: http://www.netlib.org/lapack/explore-html/d8/d52/cherk_8f.html
void CHPMV(int Uplo, Float2 alpha, Allocation Ap, Allocation X, int incX, Float2 beta, Allocation Y, int incY)
CHPMV performs the matrix-vector operation y := alpha*A*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d2/d06/chpmv_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'.
void CHPR(int Uplo, float alpha, Allocation X, int incX, Allocation Ap)
CHPR performs the rank 1 operation A := alpha*x*x**H + A Details: http://www.netlib.org/lapack/explore-html/db/dcd/chpr_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'.
void CHPR2(int Uplo, Float2 alpha, Allocation X, int incX, Allocation Y, int incY, Allocation Ap)
CHPR2 performs the symmetric rank 2 operation A := alpha*x*y**H + alpha*y*x**H + A Details: http://www.netlib.org/lapack/explore-html/d6/d44/chpr2_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'.
void CSYMM(int Side, int Uplo, Float2 alpha, Allocation A, Allocation B, Float2 beta, Allocation C)
CSYMM performs one of the matrix-matrix operations C := alpha*A*B + beta*C or C := alpha*B*A + beta*C Details: http://www.netlib.org/lapack/explore-html/db/d59/csymm_8f.html
void CSYR2K(int Uplo, int Trans, Float2 alpha, Allocation A, Allocation B, Float2 beta, Allocation C)
CSYR2K performs one of the symmetric rank 2k operations C := alpha*A*B**T + alpha*B*A**T + beta*C or C := alpha*A**T*B + alpha*B**T*A + beta*C Details: http://www.netlib.org/lapack/explore-html/de/d7e/csyr2k_8f.html
void CSYRK(int Uplo, int Trans, Float2 alpha, Allocation A, Float2 beta, Allocation C)
CSYRK performs one of the symmetric rank k operations C := alpha*A*A**T + beta*C or C := alpha*A**T*A + beta*C Details: http://www.netlib.org/lapack/explore-html/d3/d6a/csyrk_8f.html
void CTBMV(int Uplo, int TransA, int Diag, int K, Allocation A, Allocation X, int incX)
CTBMV performs one of the matrix-vector operations x := A*x or x := A**T*x or x := A**H*x Details: http://www.netlib.org/lapack/explore-html/d3/dcd/ctbmv_8f.html Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), but only the region N*(K+1) will be referenced.
void CTBSV(int Uplo, int TransA, int Diag, int K, Allocation A, Allocation X, int incX)
CTBSV solves one of the systems of equations A*x = b or A**T*x = b or A**H*x = b Details: http://www.netlib.org/lapack/explore-html/d9/d5f/ctbsv_8f.html Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), but only the region N*(K+1) will be referenced.
void CTPMV(int Uplo, int TransA, int Diag, Allocation Ap, Allocation X, int incX)
CTPMV performs one of the matrix-vector operations x := A*x or x := A**T*x or x := A**H*x Details: http://www.netlib.org/lapack/explore-html/d4/dbb/ctpmv_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'.
void CTPSV(int Uplo, int TransA, int Diag, Allocation Ap, Allocation X, int incX)
CTPSV solves one of the systems of equations A*x = b or A**T*x = b or A**H*x = b Details: http://www.netlib.org/lapack/explore-html/d8/d56/ctpsv_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'.
void CTRMM(int Side, int Uplo, int TransA, int Diag, Float2 alpha, Allocation A, Allocation B)
CTRMM performs one of the matrix-matrix operations B := alpha*op(A)*B or B := alpha*B*op(A) op(A) is one of op(A) = A or op(A) = A**T or op(A) = A**H Details: http://www.netlib.org/lapack/explore-html/d4/d9b/ctrmm_8f.html
void CTRMV(int Uplo, int TransA, int Diag, Allocation A, Allocation X, int incX)
CTRMV performs one of the matrix-vector operations x := A*x or x := A**T*x or x := A**H*x Details: http://www.netlib.org/lapack/explore-html/df/d78/ctrmv_8f.html
void CTRSM(int Side, int Uplo, int TransA, int Diag, Float2 alpha, Allocation A, Allocation B)
CTRSM solves one of the matrix equations op(A)*X := alpha*B or X*op(A) := alpha*B op(A) is one of op(A) = A or op(A) = A**T or op(A) = A**H Details: http://www.netlib.org/lapack/explore-html/de/d30/ctrsm_8f.html
void CTRSV(int Uplo, int TransA, int Diag, Allocation A, Allocation X, int incX)
CTRSV solves one of the systems of equations A*x = b or A**T*x = b or A**H*x = b Details: http://www.netlib.org/lapack/explore-html/d4/dc8/ctrsv_8f.html
void DGBMV(int TransA, int KL, int KU, double alpha, Allocation A, Allocation X, int incX, double beta, Allocation Y, int incY)
DGBMV performs one of the matrix-vector operations y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d2/d3f/dgbmv_8f.html Note: For a M*N matrix, the input Allocation should also be of size M*N (dimY = M, dimX = N), but only the region M*(KL+KU+1) will be referenced.
void DGEMM(int TransA, int TransB, double alpha, Allocation A, Allocation B, double beta, Allocation C)
DGEMM performs one of the matrix-matrix operations C := alpha*op(A)*op(B) + beta*C where op(X) is one of op(X) = X or op(X) = X**T Details: http://www.netlib.org/lapack/explore-html/d7/d2b/dgemm_8f.html
void DGEMV(int TransA, double alpha, Allocation A, Allocation X, int incX, double beta, Allocation Y, int incY)
DGEMV performs one of the matrix-vector operations y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y Details: http://www.netlib.org/lapack/explore-html/dc/da8/dgemv_8f.html
void DGER(double alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A)
DGER performs the rank 1 operation A := alpha*x*y**T + A Details: http://www.netlib.org/lapack/explore-html/dc/da8/dger_8f.html
void DSBMV(int Uplo, int K, double alpha, Allocation A, Allocation X, int incX, double beta, Allocation Y, int incY)
DSBMV performs the matrix-vector operation y := alpha*A*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d8/d1e/dsbmv_8f.html Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), but only the region N*(K+1) will be referenced.
void DSPMV(int Uplo, double alpha, Allocation Ap, Allocation X, int incX, double beta, Allocation Y, int incY)
DSPMV performs the matrix-vector operation y := alpha*A*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d4/d85/dspmv_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'.
void DSPR(int Uplo, double alpha, Allocation X, int incX, Allocation Ap)
DSPR performs the rank 1 operation A := alpha*x*x**T + A Details: http://www.netlib.org/lapack/explore-html/dd/dba/dspr_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'.
void DSPR2(int Uplo, double alpha, Allocation X, int incX, Allocation Y, int incY, Allocation Ap)
DSPR2 performs the symmetric rank 2 operation A := alpha*x*y**T + alpha*y*x**T + A Details: http://www.netlib.org/lapack/explore-html/dd/d9e/dspr2_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'.
void DSYMM(int Side, int Uplo, double alpha, Allocation A, Allocation B, double beta, Allocation C)
DSYMM performs one of the matrix-matrix operations C := alpha*A*B + beta*C or C := alpha*B*A + beta*C Details: http://www.netlib.org/lapack/explore-html/d8/db0/dsymm_8f.html
void DSYMV(int Uplo, double alpha, Allocation A, Allocation X, int incX, double beta, Allocation Y, int incY)
DSYMV performs the matrix-vector operation y := alpha*A*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d8/dbe/dsymv_8f.html
void DSYR(int Uplo, double alpha, Allocation X, int incX, Allocation A)
DSYR performs the rank 1 operation A := alpha*x*x**T + A Details: http://www.netlib.org/lapack/explore-html/d3/d60/dsyr_8f.html
void DSYR2(int Uplo, double alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A)
DSYR2 performs the symmetric rank 2 operation A := alpha*x*y**T + alpha*y*x**T + A Details: http://www.netlib.org/lapack/explore-html/de/d41/dsyr2_8f.html
void DSYR2K(int Uplo, int Trans, double alpha, Allocation A, Allocation B, double beta, Allocation C)
DSYR2K performs one of the symmetric rank 2k operations C := alpha*A*B**T + alpha*B*A**T + beta*C or C := alpha*A**T*B + alpha*B**T*A + beta*C Details: http://www.netlib.org/lapack/explore-html/d1/dec/dsyr2k_8f.html
void DSYRK(int Uplo, int Trans, double alpha, Allocation A, double beta, Allocation C)
DSYRK performs one of the symmetric rank k operations C := alpha*A*A**T + beta*C or C := alpha*A**T*A + beta*C Details: http://www.netlib.org/lapack/explore-html/dc/d05/dsyrk_8f.html
void DTBMV(int Uplo, int TransA, int Diag, int K, Allocation A, Allocation X, int incX)
DTBMV performs one of the matrix-vector operations x := A*x or x := A**T*x Details: http://www.netlib.org/lapack/explore-html/df/d29/dtbmv_8f.html Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), but only the region N*(K+1) will be referenced.
void DTBSV(int Uplo, int TransA, int Diag, int K, Allocation A, Allocation X, int incX)
DTBSV solves one of the systems of equations A*x = b or A**T*x = b Details: http://www.netlib.org/lapack/explore-html/d4/dcf/dtbsv_8f.html Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), but only the region N*(K+1) will be referenced.
void DTPMV(int Uplo, int TransA, int Diag, Allocation Ap, Allocation X, int incX)
DTPMV performs one of the matrix-vector operations x := A*x or x := A**T*x Details: http://www.netlib.org/lapack/explore-html/dc/dcd/dtpmv_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'.
void DTPSV(int Uplo, int TransA, int Diag, Allocation Ap, Allocation X, int incX)
DTPSV solves one of the systems of equations A*x = b or A**T*x = b Details: http://www.netlib.org/lapack/explore-html/d9/d84/dtpsv_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'.
void DTRMM(int Side, int Uplo, int TransA, int Diag, double alpha, Allocation A, Allocation B)
DTRMM performs one of the matrix-matrix operations B := alpha*op(A)*B or B := alpha*B*op(A) op(A) is one of op(A) = A or op(A) = A**T Details: http://www.netlib.org/lapack/explore-html/dd/d19/dtrmm_8f.html
void DTRMV(int Uplo, int TransA, int Diag, Allocation A, Allocation X, int incX)
DTRMV performs one of the matrix-vector operations x := A*x or x := A**T*x Details: http://www.netlib.org/lapack/explore-html/dc/d7e/dtrmv_8f.html
void DTRSM(int Side, int Uplo, int TransA, int Diag, double alpha, Allocation A, Allocation B)
DTRSM solves one of the matrix equations op(A)*X := alpha*B or X*op(A) := alpha*B op(A) is one of op(A) = A or op(A) = A**T Details: http://www.netlib.org/lapack/explore-html/de/da7/dtrsm_8f.html
void DTRSV(int Uplo, int TransA, int Diag, Allocation A, Allocation X, int incX)
DTRSV solves one of the systems of equations A*x = b or A**T*x = b Details: http://www.netlib.org/lapack/explore-html/d6/d96/dtrsv_8f.html
void SGBMV(int TransA, int KL, int KU, float alpha, Allocation A, Allocation X, int incX, float beta, Allocation Y, int incY)
SGBMV performs one of the matrix-vector operations y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d6/d46/sgbmv_8f.html Note: For a M*N matrix, the input Allocation should also be of size M*N (dimY = M, dimX = N), but only the region M*(KL+KU+1) will be referenced.
void SGEMM(int TransA, int TransB, float alpha, Allocation A, Allocation B, float beta, Allocation C)
SGEMM performs one of the matrix-matrix operations C := alpha*op(A)*op(B) + beta*C where op(X) is one of op(X) = X or op(X) = X**T Details: http://www.netlib.org/lapack/explore-html/d4/de2/sgemm_8f.html
void SGEMV(int TransA, float alpha, Allocation A, Allocation X, int incX, float beta, Allocation Y, int incY)
SGEMV performs one of the matrix-vector operations y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y Details: http://www.netlib.org/lapack/explore-html/db/d58/sgemv_8f.html
void SGER(float alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A)
SGER performs the rank 1 operation A := alpha*x*y**T + A Details: http://www.netlib.org/lapack/explore-html/db/d5c/sger_8f.html
void SSBMV(int Uplo, int K, float alpha, Allocation A, Allocation X, int incX, float beta, Allocation Y, int incY)
SSBMV performs the matrix-vector operation y := alpha*A*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d3/da1/ssbmv_8f.html Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), but only the region N*(K+1) will be referenced.
void SSPMV(int Uplo, float alpha, Allocation Ap, Allocation X, int incX, float beta, Allocation Y, int incY)
SSPMV performs the matrix-vector operation y := alpha*A*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d8/d68/sspmv_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'.
void SSPR(int Uplo, float alpha, Allocation X, int incX, Allocation Ap)
SSPR performs the rank 1 operation A := alpha*x*x**T + A Details: http://www.netlib.org/lapack/explore-html/d2/d9b/sspr_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'.
void SSPR2(int Uplo, float alpha, Allocation X, int incX, Allocation Y, int incY, Allocation Ap)
SSPR2 performs the symmetric rank 2 operation A := alpha*x*y**T + alpha*y*x**T + A Details: http://www.netlib.org/lapack/explore-html/db/d3e/sspr2_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'.
void SSYMM(int Side, int Uplo, float alpha, Allocation A, Allocation B, float beta, Allocation C)
SSYMM performs one of the matrix-matrix operations C := alpha*A*B + beta*C or C := alpha*B*A + beta*C Details: http://www.netlib.org/lapack/explore-html/d7/d42/ssymm_8f.html
void SSYMV(int Uplo, float alpha, Allocation A, Allocation X, int incX, float beta, Allocation Y, int incY)
SSYMV performs the matrix-vector operation y := alpha*A*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d2/d94/ssymv_8f.html
void SSYR(int Uplo, float alpha, Allocation X, int incX, Allocation A)
SSYR performs the rank 1 operation A := alpha*x*x**T + A Details: http://www.netlib.org/lapack/explore-html/d6/dac/ssyr_8f.html
void SSYR2(int Uplo, float alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A)
SSYR2 performs the symmetric rank 2 operation A := alpha*x*y**T + alpha*y*x**T + A Details: http://www.netlib.org/lapack/explore-html/db/d99/ssyr2_8f.html
void SSYR2K(int Uplo, int Trans, float alpha, Allocation A, Allocation B, float beta, Allocation C)
SSYR2K performs one of the symmetric rank 2k operations C := alpha*A*B**T + alpha*B*A**T + beta*C or C := alpha*A**T*B + alpha*B**T*A + beta*C Details: http://www.netlib.org/lapack/explore-html/df/d3d/ssyr2k_8f.html
void SSYRK(int Uplo, int Trans, float alpha, Allocation A, float beta, Allocation C)
SSYRK performs one of the symmetric rank k operations C := alpha*A*A**T + beta*C or C := alpha*A**T*A + beta*C Details: http://www.netlib.org/lapack/explore-html/d0/d40/ssyrk_8f.html
void STBMV(int Uplo, int TransA, int Diag, int K, Allocation A, Allocation X, int incX)
STBMV performs one of the matrix-vector operations x := A*x or x := A**T*x Details: http://www.netlib.org/lapack/explore-html/d6/d7d/stbmv_8f.html Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), but only the region N*(K+1) will be referenced.
void STBSV(int Uplo, int TransA, int Diag, int K, Allocation A, Allocation X, int incX)
STBSV solves one of the systems of equations A*x = b or A**T*x = b Details: http://www.netlib.org/lapack/explore-html/d0/d1f/stbsv_8f.html Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), but only the region N*(K+1) will be referenced.
void STPMV(int Uplo, int TransA, int Diag, Allocation Ap, Allocation X, int incX)
STPMV performs one of the matrix-vector operations x := A*x or x := A**T*x Details: http://www.netlib.org/lapack/explore-html/db/db1/stpmv_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'.
void STPSV(int Uplo, int TransA, int Diag, Allocation Ap, Allocation X, int incX)
STPSV solves one of the systems of equations A*x = b or A**T*x = b Details: http://www.netlib.org/lapack/explore-html/d0/d7c/stpsv_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'.
void STRMM(int Side, int Uplo, int TransA, int Diag, float alpha, Allocation A, Allocation B)
STRMM performs one of the matrix-matrix operations B := alpha*op(A)*B or B := alpha*B*op(A) op(A) is one of op(A) = A or op(A) = A**T Details: http://www.netlib.org/lapack/explore-html/df/d01/strmm_8f.html
void STRMV(int Uplo, int TransA, int Diag, Allocation A, Allocation X, int incX)
STRMV performs one of the matrix-vector operations x := A*x or x := A**T*x Details: http://www.netlib.org/lapack/explore-html/de/d45/strmv_8f.html
void STRSM(int Side, int Uplo, int TransA, int Diag, float alpha, Allocation A, Allocation B)
STRSM solves one of the matrix equations op(A)*X := alpha*B or X*op(A) := alpha*B op(A) is one of op(A) = A or op(A) = A**T Details: http://www.netlib.org/lapack/explore-html/d2/d8b/strsm_8f.html
void STRSV(int Uplo, int TransA, int Diag, Allocation A, Allocation X, int incX)
STRSV solves one of the systems of equations A*x = b or A**T*x = b Details: http://www.netlib.org/lapack/explore-html/d0/d2a/strsv_8f.html
void ZGBMV(int TransA, int KL, int KU, Double2 alpha, Allocation A, Allocation X, int incX, Double2 beta, Allocation Y, int incY)
ZGBMV performs one of the matrix-vector operations y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y or y := alpha*A**H*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d9/d46/zgbmv_8f.html Note: For a M*N matrix, the input Allocation should also be of size M*N (dimY = M, dimX = N), but only the region M*(KL+KU+1) will be referenced.
void ZGEMM(int TransA, int TransB, Double2 alpha, Allocation A, Allocation B, Double2 beta, Allocation C)
ZGEMM performs one of the matrix-matrix operations C := alpha*op(A)*op(B) + beta*C where op(X) is one of op(X) = X or op(X) = X**T or op(X) = X**H Details: http://www.netlib.org/lapack/explore-html/d7/d76/zgemm_8f.html
void ZGEMV(int TransA, Double2 alpha, Allocation A, Allocation X, int incX, Double2 beta, Allocation Y, int incY)
ZGEMV performs one of the matrix-vector operations y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y or y := alpha*A**H*x + beta*y Details: http://www.netlib.org/lapack/explore-html/db/d40/zgemv_8f.html
void ZGERC(Double2 alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A)
ZGERC performs the rank 1 operation A := alpha*x*y**H + A Details: http://www.netlib.org/lapack/explore-html/d3/dad/zgerc_8f.html
void ZGERU(Double2 alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A)
ZGERU performs the rank 1 operation A := alpha*x*y**T + A Details: http://www.netlib.org/lapack/explore-html/d7/d12/zgeru_8f.html
void ZHBMV(int Uplo, int K, Double2 alpha, Allocation A, Allocation X, int incX, Double2 beta, Allocation Y, int incY)
ZHBMV performs the matrix-vector operation y := alpha*A*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d3/d1a/zhbmv_8f.html Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), but only the region N*(K+1) will be referenced.
void ZHEMM(int Side, int Uplo, Double2 alpha, Allocation A, Allocation B, Double2 beta, Allocation C)
ZHEMM performs one of the matrix-matrix operations C := alpha*A*B + beta*C or C := alpha*B*A + beta*C Details: http://www.netlib.org/lapack/explore-html/d6/d3e/zhemm_8f.html
void ZHEMV(int Uplo, Double2 alpha, Allocation A, Allocation X, int incX, Double2 beta, Allocation Y, int incY)
ZHEMV performs the matrix-vector operation y := alpha*A*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d0/ddd/zhemv_8f.html
void ZHER(int Uplo, double alpha, Allocation X, int incX, Allocation A)
ZHER performs the rank 1 operation A := alpha*x*x**H + A Details: http://www.netlib.org/lapack/explore-html/de/d0e/zher_8f.html
void ZHER2(int Uplo, Double2 alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A)
ZHER2 performs the symmetric rank 2 operation A := alpha*x*y**H + alpha*y*x**H + A Details: http://www.netlib.org/lapack/explore-html/da/d8a/zher2_8f.html
void ZHER2K(int Uplo, int Trans, Double2 alpha, Allocation A, Allocation B, double beta, Allocation C)
ZHER2K performs one of the hermitian rank 2k operations C := alpha*A*B**H + conjg( alpha )*B*A**H + beta*C or C := alpha*A**H*B + conjg( alpha )*B**H*A + beta*C Details: http://www.netlib.org/lapack/explore-html/d7/dfa/zher2k_8f.html
void ZHERK(int Uplo, int Trans, double alpha, Allocation A, double beta, Allocation C)
ZHERK performs one of the hermitian rank k operations C := alpha*A*A**H + beta*C or C := alpha*A**H*A + beta*C Details: http://www.netlib.org/lapack/explore-html/d1/db1/zherk_8f.html
void ZHPMV(int Uplo, Double2 alpha, Allocation Ap, Allocation X, int incX, Double2 beta, Allocation Y, int incY)
ZHPMV performs the matrix-vector operation y := alpha*A*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d0/d60/zhpmv_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'.
void ZHPR(int Uplo, double alpha, Allocation X, int incX, Allocation Ap)
ZHPR performs the rank 1 operation A := alpha*x*x**H + A Details: http://www.netlib.org/lapack/explore-html/de/de1/zhpr_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'.
void ZHPR2(int Uplo, Double2 alpha, Allocation X, int incX, Allocation Y, int incY, Allocation Ap)
ZHPR2 performs the symmetric rank 2 operation A := alpha*x*y**H + alpha*y*x**H + A Details: http://www.netlib.org/lapack/explore-html/d5/d52/zhpr2_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'.
void ZSYMM(int Side, int Uplo, Double2 alpha, Allocation A, Allocation B, Double2 beta, Allocation C)
ZSYMM performs one of the matrix-matrix operations C := alpha*A*B + beta*C or C := alpha*B*A + beta*C Details: http://www.netlib.org/lapack/explore-html/df/d51/zsymm_8f.html
void ZSYR2K(int Uplo, int Trans, Double2 alpha, Allocation A, Allocation B, Double2 beta, Allocation C)
ZSYR2K performs one of the symmetric rank 2k operations C := alpha*A*B**T + alpha*B*A**T + beta*C or C := alpha*A**T*B + alpha*B**T*A + beta*C Details: http://www.netlib.org/lapack/explore-html/df/d20/zsyr2k_8f.html
void ZSYRK(int Uplo, int Trans, Double2 alpha, Allocation A, Double2 beta, Allocation C)
ZSYRK performs one of the symmetric rank k operations C := alpha*A*A**T + beta*C or C := alpha*A**T*A + beta*C Details: http://www.netlib.org/lapack/explore-html/de/d54/zsyrk_8f.html
void ZTBMV(int Uplo, int TransA, int Diag, int K, Allocation A, Allocation X, int incX)
ZTBMV performs one of the matrix-vector operations x := A*x or x := A**T*x or x := A**H*x Details: http://www.netlib.org/lapack/explore-html/d3/d39/ztbmv_8f.html Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), but only the region N*(K+1) will be referenced.
void ZTBSV(int Uplo, int TransA, int Diag, int K, Allocation A, Allocation X, int incX)
ZTBSV solves one of the systems of equations A*x = b or A**T*x = b or A**H*x = b Details: http://www.netlib.org/lapack/explore-html/d4/d5a/ztbsv_8f.html Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), but only the region N*(K+1) will be referenced.
void ZTPMV(int Uplo, int TransA, int Diag, Allocation Ap, Allocation X, int incX)
ZTPMV performs one of the matrix-vector operations x := A*x or x := A**T*x or x := A**H*x Details: http://www.netlib.org/lapack/explore-html/d2/d9e/ztpmv_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'.
void ZTPSV(int Uplo, int TransA, int Diag, Allocation Ap, Allocation X, int incX)
ZTPSV solves one of the systems of equations A*x = b or A**T*x = b or A**H*x = b Details: http://www.netlib.org/lapack/explore-html/da/d57/ztpsv_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'.
void ZTRMM(int Side, int Uplo, int TransA, int Diag, Double2 alpha, Allocation A, Allocation B)
ZTRMM performs one of the matrix-matrix operations B := alpha*op(A)*B or B := alpha*B*op(A) op(A) is one of op(A) = A or op(A) = A**T or op(A) = A**H Details: http://www.netlib.org/lapack/explore-html/d8/de1/ztrmm_8f.html
void ZTRMV(int Uplo, int TransA, int Diag, Allocation A, Allocation X, int incX)
ZTRMV performs one of the matrix-vector operations x := A*x or x := A**T*x or x := A**H*x Details: http://www.netlib.org/lapack/explore-html/d0/dd1/ztrmv_8f.html
void ZTRSM(int Side, int Uplo, int TransA, int Diag, Double2 alpha, Allocation A, Allocation B)
ZTRSM solves one of the matrix equations op(A)*X := alpha*B or X*op(A) := alpha*B op(A) is one of op(A) = A or op(A) = A**T or op(A) = A**H Details: http://www.netlib.org/lapack/explore-html/d1/d39/ztrsm_8f.html
void ZTRSV(int Uplo, int TransA, int Diag, Allocation A, Allocation X, int incX)
ZTRSV solves one of the systems of equations A*x = b or A**T*x = b or A**H*x = b Details: http://www.netlib.org/lapack/explore-html/d1/d2f/ztrsv_8f.html
static ScriptIntrinsicBLAS create(RenderScript rs)
Create an intrinsic to access BLAS subroutines.
[Expand]
Inherited Methods
From class android.support.v8.renderscript.Script
From class android.support.v8.renderscript.BaseObj
From class java.lang.Object

Constants

public static final int CONJ_TRANSPOSE

Constant Value: 113 (0x00000071)

public static final int LEFT

Constant Value: 141 (0x0000008d)

public static final int LOWER

Constant Value: 122 (0x0000007a)

public static final int NON_UNIT

Constant Value: 131 (0x00000083)

public static final int NO_TRANSPOSE

Constant Value: 111 (0x0000006f)

public static final int RIGHT

Constant Value: 142 (0x0000008e)

public static final int TRANSPOSE

Constant Value: 112 (0x00000070)

public static final int UNIT

Constant Value: 132 (0x00000084)

public static final int UPPER

Constant Value: 121 (0x00000079)

Public Methods

public void BNNM (Allocation A, int a_offset, Allocation B, int b_offset, Allocation C, int c_offset, int c_mult)

8-bit GEMM-like operation for neural networks: C = A * Transpose(B) Calculations are done in 1.10.21 fixed-point format for the final output, just before there's a shift down to drop the fractional parts. The output values are gated to 0 to 255 to fit in a byte, but the 10-bit format gives some headroom to avoid wrapping around on small overflows.

Parameters
A The input allocation contains matrix A, supported elements type U8(RenderScript).
a_offset The offset for all values in matrix A, e.g A[i,j] = A[i,j] - a_offset. Value should be from 0 to 255.
B The input allocation contains matrix B, supported elements type U8(RenderScript).
b_offset The offset for all values in matrix B, e.g B[i,j] = B[i,j] - b_offset. Value should be from 0 to 255.
C The input allocation contains matrix C, supported elements type U8(RenderScript).
c_offset The offset for all values in matrix C.
c_mult The multiplier for all values in matrix C, e.g C[i,j] = (C[i,j] + c_offset) * c_mult.

public void CGBMV (int TransA, int KL, int KU, Float2 alpha, Allocation A, Allocation X, int incX, Float2 beta, Allocation Y, int incY)

CGBMV performs one of the matrix-vector operations y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y or y := alpha*A**H*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d0/d75/cgbmv_8f.html Note: For a M*N matrix, the input Allocation should also be of size M*N (dimY = M, dimX = N), but only the region M*(KL+KU+1) will be referenced. The following subroutine can is an example showing how to convert the original matrix 'a' to row-based band matrix 'b'. for i in range(0, m): for j in range(max(0, i-kl), min(i+ku+1, n)): b[i, j-i+kl] = a[i, j]

Parameters
TransA The type of transpose applied to matrix A.
KL The number of sub-diagonals of the matrix A.
KU The number of super-diagonals of the matrix A.
alpha The scalar alpha.
A The input allocation contains the band matrix A, supported elements type F32_2(RenderScript).
X The input allocation contains vector x, supported elements type F32_2(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.
beta The scalar beta.
Y The input allocation contains vector y, supported elements type F32_2(RenderScript).
incY The increment for the elements of vector y, must be larger than zero.

public void CGEMM (int TransA, int TransB, Float2 alpha, Allocation A, Allocation B, Float2 beta, Allocation C)

CGEMM performs one of the matrix-matrix operations C := alpha*op(A)*op(B) + beta*C where op(X) is one of op(X) = X or op(X) = X**T or op(X) = X**H Details: http://www.netlib.org/lapack/explore-html/d6/d5b/cgemm_8f.html

Parameters
TransA The type of transpose applied to matrix A.
TransB The type of transpose applied to matrix B.
alpha The scalar alpha.
A The input allocation contains matrix A, supported elements type F32_2(RenderScript).
B The input allocation contains matrix B, supported elements type F32_2(RenderScript).
beta The scalar beta.
C The input allocation contains matrix C, supported elements type F32_2(RenderScript).

public void CGEMV (int TransA, Float2 alpha, Allocation A, Allocation X, int incX, Float2 beta, Allocation Y, int incY)

CGEMV performs one of the matrix-vector operations y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y or y := alpha*A**H*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d4/d8a/cgemv_8f.html

Parameters
TransA The type of transpose applied to matrix A.
alpha The scalar alpha.
A The input allocation contains matrix A, supported elements type F32_2(RenderScript).
X The input allocation contains vector x, supported elements type F32_2(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.
beta The scalar beta.
Y The input allocation contains vector y, supported elements type F32_2(RenderScript).
incY The increment for the elements of vector y, must be larger than zero.

public void CGERC (Float2 alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A)

CGERC performs the rank 1 operation A := alpha*x*y**H + A Details: http://www.netlib.org/lapack/explore-html/dd/d84/cgerc_8f.html

Parameters
alpha The scalar alpha.
X The input allocation contains vector x, supported elements type F32_2(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.
Y The input allocation contains vector y, supported elements type F32_2(RenderScript).
incY The increment for the elements of vector y, must be larger than zero.
A The input allocation contains matrix A, supported elements type F32_2(RenderScript).

public void CGERU (Float2 alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A)

CGERU performs the rank 1 operation A := alpha*x*y**T + A Details: http://www.netlib.org/lapack/explore-html/db/d5f/cgeru_8f.html

Parameters
alpha The scalar alpha.
X The input allocation contains vector x, supported elements type F32_2(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.
Y The input allocation contains vector y, supported elements type F32_2(RenderScript).
incY The increment for the elements of vector y, must be larger than zero.
A The input allocation contains matrix A, supported elements type F32_2(RenderScript).

public void CHBMV (int Uplo, int K, Float2 alpha, Allocation A, Allocation X, int incX, Float2 beta, Allocation Y, int incY)

CHBMV performs the matrix-vector operation y := alpha*A*x + beta*y Details: http://www.netlib.org/lapack/explore-html/db/dc2/chbmv_8f.html Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), but only the region N*(K+1) will be referenced. The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. for i in range(0, n): for j in range(i, min(i+k+1, n)): b[i, j-i] = a[i, j]

Parameters
Uplo Specifies whether the upper or lower triangular part of the band matrix A is being supplied.
K The number of off-diagonals of the matrix A
alpha The scalar alpha.
A The input allocation contains matrix A, supported elements type F32_2(RenderScript).
X The input allocation contains vector x, supported elements type F32_2(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.
beta The scalar beta.
Y The input allocation contains vector y, supported elements type F32_2(RenderScript).
incY The increment for the elements of vector y, must be larger than zero.

public void CHEMM (int Side, int Uplo, Float2 alpha, Allocation A, Allocation B, Float2 beta, Allocation C)

CHEMM performs one of the matrix-matrix operations C := alpha*A*B + beta*C or C := alpha*B*A + beta*C Details: http://www.netlib.org/lapack/explore-html/d3/d66/chemm_8f.html

Parameters
Side Specifies whether the symmetric matrix A appears on the left or right.
Uplo Specifies whether the upper or lower triangular part is to be referenced.
alpha The scalar alpha.
A The input allocation contains matrix A, supported elements type F32_2(RenderScript).
B The input allocation contains matrix B, supported elements type F32_2(RenderScript).
beta The scalar beta.
C The input allocation contains matrix C, supported elements type F32_2(RenderScript).

public void CHEMV (int Uplo, Float2 alpha, Allocation A, Allocation X, int incX, Float2 beta, Allocation Y, int incY)

CHEMV performs the matrix-vector operation y := alpha*A*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d7/d51/chemv_8f.html

Parameters
Uplo Specifies whether the upper or lower triangular part is to be referenced.
alpha The scalar alpha.
A The input allocation contains matrix A, supported elements type F32_2(RenderScript).
X The input allocation contains vector x, supported elements type F32_2(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.
beta The scalar beta.
Y The input allocation contains vector y, supported elements type F32_2(RenderScript).
incY The increment for the elements of vector y, must be larger than zero.

public void CHER (int Uplo, float alpha, Allocation X, int incX, Allocation A)

CHER performs the rank 1 operation A := alpha*x*x**H + A Details: http://www.netlib.org/lapack/explore-html/d3/d6d/cher_8f.html

Parameters
Uplo Specifies whether the upper or lower triangular part is to be referenced.
alpha The scalar alpha.
X The input allocation contains vector x, supported elements type F32_2(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.
A The input allocation contains matrix A, supported elements type F32_2(RenderScript).

public void CHER2 (int Uplo, Float2 alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A)

CHER2 performs the symmetric rank 2 operation A := alpha*x*y**H + alpha*y*x**H + A Details: http://www.netlib.org/lapack/explore-html/db/d87/cher2_8f.html

Parameters
Uplo Specifies whether the upper or lower triangular part is to be referenced.
alpha The scalar alpha.
X The input allocation contains vector x, supported elements type F32_2(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.
Y The input allocation contains vector y, supported elements type F32_2(RenderScript).
incY The increment for the elements of vector y, must be larger than zero.
A The input allocation contains matrix A, supported elements type F32_2(RenderScript).

public void CHER2K (int Uplo, int Trans, Float2 alpha, Allocation A, Allocation B, float beta, Allocation C)

CHER2K performs one of the hermitian rank 2k operations C := alpha*A*B**H + conjg( alpha )*B*A**H + beta*C or C := alpha*A**H*B + conjg( alpha )*B**H*A + beta*C Details: http://www.netlib.org/lapack/explore-html/d1/d82/cher2k_8f.html

Parameters
Uplo Specifies whether the upper or lower triangular part of C is to be referenced.
Trans The type of transpose applied to the operation.
alpha The scalar alpha.
A The input allocation contains matrix A, supported elements type F32_2(RenderScript).
B The input allocation contains matrix B, supported elements type F32_2(RenderScript).
beta The scalar beta.
C The input allocation contains matrix C, supported elements type F32_2(RenderScript).

public void CHERK (int Uplo, int Trans, float alpha, Allocation A, float beta, Allocation C)

CHERK performs one of the hermitian rank k operations C := alpha*A*A**H + beta*C or C := alpha*A**H*A + beta*C Details: http://www.netlib.org/lapack/explore-html/d8/d52/cherk_8f.html

Parameters
Uplo Specifies whether the upper or lower triangular part of C is to be referenced.
Trans The type of transpose applied to the operation.
alpha The scalar alpha.
A The input allocation contains matrix A, supported elements type F32_2(RenderScript).
beta The scalar beta.
C The input allocation contains matrix C, supported elements type F32_2(RenderScript).

public void CHPMV (int Uplo, Float2 alpha, Allocation Ap, Allocation X, int incX, Float2 beta, Allocation Y, int incY)

CHPMV performs the matrix-vector operation y := alpha*A*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d2/d06/chpmv_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'. k = 0 for i in range(0, n): for j in range(i, n): b[k++] = a[i, j]

Parameters
Uplo Specifies whether the upper or lower triangular part of the matrix A is supplied in packed form.
alpha The scalar alpha.
Ap The input allocation contains matrix A, supported elements type F32_2(RenderScript).
X The input allocation contains vector x, supported elements type F32_2(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.
beta The scalar beta.
Y The input allocation contains vector y, supported elements type F32_2(RenderScript).
incY The increment for the elements of vector y, must be larger than zero.

public void CHPR (int Uplo, float alpha, Allocation X, int incX, Allocation Ap)

CHPR performs the rank 1 operation A := alpha*x*x**H + A Details: http://www.netlib.org/lapack/explore-html/db/dcd/chpr_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'. k = 0 for i in range(0, n): for j in range(i, n): b[k++] = a[i, j]

Parameters
Uplo Specifies whether the upper or lower triangular part is to be supplied in the packed form.
alpha The scalar alpha.
X The input allocation contains vector x, supported elements type F32_2(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.
Ap The input allocation contains matrix A, supported elements type F32_2(RenderScript).

public void CHPR2 (int Uplo, Float2 alpha, Allocation X, int incX, Allocation Y, int incY, Allocation Ap)

CHPR2 performs the symmetric rank 2 operation A := alpha*x*y**H + alpha*y*x**H + A Details: http://www.netlib.org/lapack/explore-html/d6/d44/chpr2_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'. k = 0 for i in range(0, n): for j in range(i, n): b[k++] = a[i, j]

Parameters
Uplo Specifies whether the upper or lower triangular part is to be supplied in the packed form.
alpha The scalar alpha.
X The input allocation contains vector x, supported elements type F32_2(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.
Y The input allocation contains vector y, supported elements type F32_2(RenderScript).
incY The increment for the elements of vector y, must be larger than zero.
Ap The input allocation contains matrix A, supported elements type F32_2(RenderScript).

public void CSYMM (int Side, int Uplo, Float2 alpha, Allocation A, Allocation B, Float2 beta, Allocation C)

CSYMM performs one of the matrix-matrix operations C := alpha*A*B + beta*C or C := alpha*B*A + beta*C Details: http://www.netlib.org/lapack/explore-html/db/d59/csymm_8f.html

Parameters
Side Specifies whether the symmetric matrix A appears on the left or right.
Uplo Specifies whether the upper or lower triangular part is to be referenced.
alpha The scalar alpha.
A The input allocation contains matrix A, supported elements type F32_2(RenderScript).
B The input allocation contains matrix B, supported elements type F32_2(RenderScript).
beta The scalar beta.
C The input allocation contains matrix C, supported elements type F32_2(RenderScript).

public void CSYR2K (int Uplo, int Trans, Float2 alpha, Allocation A, Allocation B, Float2 beta, Allocation C)

CSYR2K performs one of the symmetric rank 2k operations C := alpha*A*B**T + alpha*B*A**T + beta*C or C := alpha*A**T*B + alpha*B**T*A + beta*C Details: http://www.netlib.org/lapack/explore-html/de/d7e/csyr2k_8f.html

Parameters
Uplo Specifies whether the upper or lower triangular part of C is to be referenced.
Trans The type of transpose applied to the operation.
alpha The scalar alpha.
A The input allocation contains matrix A, supported elements type F32_2(RenderScript).
B The input allocation contains matrix B, supported elements type F32_2(RenderScript).
beta The scalar beta.
C The input allocation contains matrix C, supported elements type F32_2(RenderScript).

public void CSYRK (int Uplo, int Trans, Float2 alpha, Allocation A, Float2 beta, Allocation C)

CSYRK performs one of the symmetric rank k operations C := alpha*A*A**T + beta*C or C := alpha*A**T*A + beta*C Details: http://www.netlib.org/lapack/explore-html/d3/d6a/csyrk_8f.html

Parameters
Uplo Specifies whether the upper or lower triangular part of C is to be referenced.
Trans The type of transpose applied to the operation.
alpha The scalar alpha.
A The input allocation contains matrix A, supported elements type F32_2(RenderScript).
beta The scalar beta.
C The input allocation contains matrix C, supported elements type F32_2(RenderScript).

public void CTBMV (int Uplo, int TransA, int Diag, int K, Allocation A, Allocation X, int incX)

CTBMV performs one of the matrix-vector operations x := A*x or x := A**T*x or x := A**H*x Details: http://www.netlib.org/lapack/explore-html/d3/dcd/ctbmv_8f.html Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), but only the region N*(K+1) will be referenced. The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. for i in range(0, n): for j in range(i, min(i+k+1, n)): b[i, j-i] = a[i, j]

Parameters
Uplo Specifies whether the matrix is an upper or lower triangular matrix.
TransA The type of transpose applied to matrix A.
Diag Specifies whether or not A is unit triangular.
K The number of off-diagonals of the matrix A
A The input allocation contains matrix A, supported elements type F32_2(RenderScript).
X The input allocation contains vector x, supported elements type F32_2(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.

public void CTBSV (int Uplo, int TransA, int Diag, int K, Allocation A, Allocation X, int incX)

CTBSV solves one of the systems of equations A*x = b or A**T*x = b or A**H*x = b Details: http://www.netlib.org/lapack/explore-html/d9/d5f/ctbsv_8f.html Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), but only the region N*(K+1) will be referenced. The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. for i in range(0, n): for j in range(i, min(i+k+1, n)): b[i, j-i] = a[i, j]

Parameters
Uplo Specifies whether the matrix is an upper or lower triangular matrix.
TransA The type of transpose applied to matrix A.
Diag Specifies whether or not A is unit triangular.
K The number of off-diagonals of the matrix A
A The input allocation contains matrix A, supported elements type F32_2(RenderScript).
X The input allocation contains vector x, supported elements type F32_2(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.

public void CTPMV (int Uplo, int TransA, int Diag, Allocation Ap, Allocation X, int incX)

CTPMV performs one of the matrix-vector operations x := A*x or x := A**T*x or x := A**H*x Details: http://www.netlib.org/lapack/explore-html/d4/dbb/ctpmv_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'. k = 0 for i in range(0, n): for j in range(i, n): b[k++] = a[i, j]

Parameters
Uplo Specifies whether the matrix is an upper or lower triangular matrix.
TransA The type of transpose applied to matrix A.
Diag Specifies whether or not A is unit triangular.
Ap The input allocation contains packed matrix A, supported elements type F32_2(RenderScript).
X The input allocation contains vector x, supported elements type F32_2(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.

public void CTPSV (int Uplo, int TransA, int Diag, Allocation Ap, Allocation X, int incX)

CTPSV solves one of the systems of equations A*x = b or A**T*x = b or A**H*x = b Details: http://www.netlib.org/lapack/explore-html/d8/d56/ctpsv_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'. k = 0 for i in range(0, n): for j in range(i, n): b[k++] = a[i, j]

Parameters
Uplo Specifies whether the matrix is an upper or lower triangular matrix.
TransA The type of transpose applied to matrix A.
Diag Specifies whether or not A is unit triangular.
Ap The input allocation contains packed matrix A, supported elements type F32_2(RenderScript).
X The input allocation contains vector x, supported elements type F32_2(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.

public void CTRMM (int Side, int Uplo, int TransA, int Diag, Float2 alpha, Allocation A, Allocation B)

CTRMM performs one of the matrix-matrix operations B := alpha*op(A)*B or B := alpha*B*op(A) op(A) is one of op(A) = A or op(A) = A**T or op(A) = A**H Details: http://www.netlib.org/lapack/explore-html/d4/d9b/ctrmm_8f.html

Parameters
Side Specifies whether the symmetric matrix A appears on the left or right.
Uplo Specifies whether matrix A is upper or lower triangular.
TransA The type of transpose applied to matrix A.
Diag Specifies whether or not A is unit triangular.
alpha The scalar alpha.
A The input allocation contains matrix A, supported elements type F32_2(RenderScript).
B The input allocation contains matrix B, supported elements type F32_2(RenderScript).

public void CTRMV (int Uplo, int TransA, int Diag, Allocation A, Allocation X, int incX)

CTRMV performs one of the matrix-vector operations x := A*x or x := A**T*x or x := A**H*x Details: http://www.netlib.org/lapack/explore-html/df/d78/ctrmv_8f.html

Parameters
Uplo Specifies whether the matrix is an upper or lower triangular matrix.
TransA The type of transpose applied to matrix A.
Diag Specifies whether or not A is unit triangular.
A The input allocation contains matrix A, supported elements type F32_2(RenderScript).
X The input allocation contains vector x, supported elements type F32_2(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.

public void CTRSM (int Side, int Uplo, int TransA, int Diag, Float2 alpha, Allocation A, Allocation B)

CTRSM solves one of the matrix equations op(A)*X := alpha*B or X*op(A) := alpha*B op(A) is one of op(A) = A or op(A) = A**T or op(A) = A**H Details: http://www.netlib.org/lapack/explore-html/de/d30/ctrsm_8f.html

Parameters
Side Specifies whether the symmetric matrix A appears on the left or right.
Uplo Specifies whether matrix A is upper or lower triangular.
TransA The type of transpose applied to matrix A.
Diag Specifies whether or not A is unit triangular.
alpha The scalar alpha.
A The input allocation contains matrix A, supported elements type F32_2(RenderScript).
B The input allocation contains matrix B, supported elements type F32_2(RenderScript).

public void CTRSV (int Uplo, int TransA, int Diag, Allocation A, Allocation X, int incX)

CTRSV solves one of the systems of equations A*x = b or A**T*x = b or A**H*x = b Details: http://www.netlib.org/lapack/explore-html/d4/dc8/ctrsv_8f.html

Parameters
Uplo Specifies whether the matrix is an upper or lower triangular matrix.
TransA The type of transpose applied to matrix A.
Diag Specifies whether or not A is unit triangular.
A The input allocation contains matrix A, supported elements type F32_2(RenderScript).
X The input allocation contains vector x, supported elements type F32_2(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.

public void DGBMV (int TransA, int KL, int KU, double alpha, Allocation A, Allocation X, int incX, double beta, Allocation Y, int incY)

DGBMV performs one of the matrix-vector operations y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d2/d3f/dgbmv_8f.html Note: For a M*N matrix, the input Allocation should also be of size M*N (dimY = M, dimX = N), but only the region M*(KL+KU+1) will be referenced. The following subroutine can is an example showing how to convert the original matrix 'a' to row-based band matrix 'b'. for i in range(0, m): for j in range(max(0, i-kl), min(i+ku+1, n)): b[i, j-i+kl] = a[i, j]

Parameters
TransA The type of transpose applied to matrix A.
KL The number of sub-diagonals of the matrix A.
KU The number of super-diagonals of the matrix A.
alpha The scalar alpha.
A The input allocation contains the band matrix A, supported elements type F64(RenderScript).
X The input allocation contains vector x, supported elements type F64(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.
beta The scalar beta.
Y The input allocation contains vector y, supported elements type F64(RenderScript).
incY The increment for the elements of vector y, must be larger than zero.

public void DGEMM (int TransA, int TransB, double alpha, Allocation A, Allocation B, double beta, Allocation C)

DGEMM performs one of the matrix-matrix operations C := alpha*op(A)*op(B) + beta*C where op(X) is one of op(X) = X or op(X) = X**T Details: http://www.netlib.org/lapack/explore-html/d7/d2b/dgemm_8f.html

Parameters
TransA The type of transpose applied to matrix A.
TransB The type of transpose applied to matrix B.
alpha The scalar alpha.
A The input allocation contains matrix A, supported elements type F64(RenderScript).
B The input allocation contains matrix B, supported elements type F64(RenderScript).
beta The scalar beta.
C The input allocation contains matrix C, supported elements type F64(RenderScript).

public void DGEMV (int TransA, double alpha, Allocation A, Allocation X, int incX, double beta, Allocation Y, int incY)

DGEMV performs one of the matrix-vector operations y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y Details: http://www.netlib.org/lapack/explore-html/dc/da8/dgemv_8f.html

Parameters
TransA The type of transpose applied to matrix A.
alpha The scalar alpha.
A The input allocation contains matrix A, supported elements type F64(RenderScript).
X The input allocation contains vector x, supported elements type F64(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.
beta The scalar beta.
Y The input allocation contains vector y, supported elements type F64(RenderScript).
incY The increment for the elements of vector y, must be larger than zero.

public void DGER (double alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A)

DGER performs the rank 1 operation A := alpha*x*y**T + A Details: http://www.netlib.org/lapack/explore-html/dc/da8/dger_8f.html

Parameters
alpha The scalar alpha.
X The input allocation contains vector x, supported elements type F64(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.
Y The input allocation contains vector y, supported elements type F64(RenderScript).
incY The increment for the elements of vector y, must be larger than zero.
A The input allocation contains matrix A, supported elements type F64(RenderScript).

public void DSBMV (int Uplo, int K, double alpha, Allocation A, Allocation X, int incX, double beta, Allocation Y, int incY)

DSBMV performs the matrix-vector operation y := alpha*A*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d8/d1e/dsbmv_8f.html Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), but only the region N*(K+1) will be referenced. The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. for i in range(0, n): for j in range(i, min(i+k+1, n)): b[i, j-i] = a[i, j]

Parameters
Uplo Specifies whether the upper or lower triangular part of the band matrix A is being supplied.
K The number of off-diagonals of the matrix A
alpha The scalar alpha.
A The input allocation contains matrix A, supported elements type F64(RenderScript).
X The input allocation contains vector x, supported elements type F64(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.
beta The scalar beta.
Y The input allocation contains vector y, supported elements type F64(RenderScript).
incY The increment for the elements of vector y, must be larger than zero.

public void DSPMV (int Uplo, double alpha, Allocation Ap, Allocation X, int incX, double beta, Allocation Y, int incY)

DSPMV performs the matrix-vector operation y := alpha*A*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d4/d85/dspmv_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'. k = 0 for i in range(0, n): for j in range(i, n): b[k++] = a[i, j]

Parameters
Uplo Specifies whether the upper or lower triangular part of the matrix A is supplied in packed form.
alpha The scalar alpha.
Ap The input allocation contains matrix A, supported elements type F64(RenderScript).
X The input allocation contains vector x, supported elements type F64(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.
beta The scalar beta.
Y The input allocation contains vector y, supported elements type F64(RenderScript).
incY The increment for the elements of vector y, must be larger than zero.

public void DSPR (int Uplo, double alpha, Allocation X, int incX, Allocation Ap)

DSPR performs the rank 1 operation A := alpha*x*x**T + A Details: http://www.netlib.org/lapack/explore-html/dd/dba/dspr_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'. k = 0 for i in range(0, n): for j in range(i, n): b[k++] = a[i, j]

Parameters
Uplo Specifies whether the upper or lower triangular part is to be supplied in the packed form.
alpha The scalar alpha.
X The input allocation contains vector x, supported elements type F64(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.
Ap The input allocation contains matrix A, supported elements type F64(RenderScript).

public void DSPR2 (int Uplo, double alpha, Allocation X, int incX, Allocation Y, int incY, Allocation Ap)

DSPR2 performs the symmetric rank 2 operation A := alpha*x*y**T + alpha*y*x**T + A Details: http://www.netlib.org/lapack/explore-html/dd/d9e/dspr2_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'. k = 0 for i in range(0, n): for j in range(i, n): b[k++] = a[i, j]

Parameters
Uplo Specifies whether the upper or lower triangular part is to be supplied in the packed form.
alpha The scalar alpha.
X The input allocation contains vector x, supported elements type F64(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.
Y The input allocation contains vector y, supported elements type F64(RenderScript).
incY The increment for the elements of vector y, must be larger than zero.
Ap The input allocation contains matrix A, supported elements type F64(RenderScript).

public void DSYMM (int Side, int Uplo, double alpha, Allocation A, Allocation B, double beta, Allocation C)

DSYMM performs one of the matrix-matrix operations C := alpha*A*B + beta*C or C := alpha*B*A + beta*C Details: http://www.netlib.org/lapack/explore-html/d8/db0/dsymm_8f.html

Parameters
Side Specifies whether the symmetric matrix A appears on the left or right.
Uplo Specifies whether the upper or lower triangular part is to be referenced.
alpha The scalar alpha.
A The input allocation contains matrix A, supported elements type F64(RenderScript).
B The input allocation contains matrix B, supported elements type F64(RenderScript).
beta The scalar beta.
C The input allocation contains matrix C, supported elements type F64(RenderScript).

public void DSYMV (int Uplo, double alpha, Allocation A, Allocation X, int incX, double beta, Allocation Y, int incY)

DSYMV performs the matrix-vector operation y := alpha*A*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d8/dbe/dsymv_8f.html

Parameters
Uplo Specifies whether the upper or lower triangular part is to be referenced.
alpha The scalar alpha.
A The input allocation contains matrix A, supported elements type F64(RenderScript).
X The input allocation contains vector x, supported elements type F64(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.
beta The scalar beta.
Y The input allocation contains vector y, supported elements type F64(RenderScript).
incY The increment for the elements of vector y, must be larger than zero.

public void DSYR (int Uplo, double alpha, Allocation X, int incX, Allocation A)

DSYR performs the rank 1 operation A := alpha*x*x**T + A Details: http://www.netlib.org/lapack/explore-html/d3/d60/dsyr_8f.html

Parameters
Uplo Specifies whether the upper or lower triangular part is to be referenced.
alpha The scalar alpha.
X The input allocation contains vector x, supported elements type F64(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.
A The input allocation contains matrix A, supported elements type F64(RenderScript).

public void DSYR2 (int Uplo, double alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A)

DSYR2 performs the symmetric rank 2 operation A := alpha*x*y**T + alpha*y*x**T + A Details: http://www.netlib.org/lapack/explore-html/de/d41/dsyr2_8f.html

Parameters
Uplo Specifies whether the upper or lower triangular part is to be referenced.
alpha The scalar alpha.
X The input allocation contains vector x, supported elements type F64(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.
Y The input allocation contains vector y, supported elements type F64(RenderScript).
incY The increment for the elements of vector y, must be larger than zero.
A The input allocation contains matrix A, supported elements type F64(RenderScript).

public void DSYR2K (int Uplo, int Trans, double alpha, Allocation A, Allocation B, double beta, Allocation C)

DSYR2K performs one of the symmetric rank 2k operations C := alpha*A*B**T + alpha*B*A**T + beta*C or C := alpha*A**T*B + alpha*B**T*A + beta*C Details: http://www.netlib.org/lapack/explore-html/d1/dec/dsyr2k_8f.html

Parameters
Uplo Specifies whether the upper or lower triangular part of C is to be referenced.
Trans The type of transpose applied to the operation.
alpha The scalar alpha.
A The input allocation contains matrix A, supported elements type F64(RenderScript).
B The input allocation contains matrix B, supported elements type F64(RenderScript).
beta The scalar beta.
C The input allocation contains matrix C, supported elements type F64(RenderScript).

public void DSYRK (int Uplo, int Trans, double alpha, Allocation A, double beta, Allocation C)

DSYRK performs one of the symmetric rank k operations C := alpha*A*A**T + beta*C or C := alpha*A**T*A + beta*C Details: http://www.netlib.org/lapack/explore-html/dc/d05/dsyrk_8f.html

Parameters
Uplo Specifies whether the upper or lower triangular part of C is to be referenced.
Trans The type of transpose applied to the operation.
alpha The scalar alpha.
A The input allocation contains matrix A, supported elements type F64(RenderScript).
beta The scalar beta.
C The input allocation contains matrix C, supported elements type F64(RenderScript).

public void DTBMV (int Uplo, int TransA, int Diag, int K, Allocation A, Allocation X, int incX)

DTBMV performs one of the matrix-vector operations x := A*x or x := A**T*x Details: http://www.netlib.org/lapack/explore-html/df/d29/dtbmv_8f.html Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), but only the region N*(K+1) will be referenced. The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. for i in range(0, n): for j in range(i, min(i+k+1, n)): b[i, j-i] = a[i, j]

Parameters
Uplo Specifies whether the matrix is an upper or lower triangular matrix.
TransA The type of transpose applied to matrix A.
Diag Specifies whether or not A is unit triangular.
K The number of off-diagonals of the matrix A
A The input allocation contains matrix A, supported elements type F64(RenderScript).
X The input allocation contains vector x, supported elements type F64(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.

public void DTBSV (int Uplo, int TransA, int Diag, int K, Allocation A, Allocation X, int incX)

DTBSV solves one of the systems of equations A*x = b or A**T*x = b Details: http://www.netlib.org/lapack/explore-html/d4/dcf/dtbsv_8f.html Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), but only the region N*(K+1) will be referenced. The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. for i in range(0, n): for j in range(i, min(i+k+1, n)): b[i, j-i] = a[i, j]

Parameters
Uplo Specifies whether the matrix is an upper or lower triangular matrix.
TransA The type of transpose applied to matrix A.
Diag Specifies whether or not A is unit triangular.
K The number of off-diagonals of the matrix A
A The input allocation contains matrix A, supported elements type F64(RenderScript).
X The input allocation contains vector x, supported elements type F64(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.

public void DTPMV (int Uplo, int TransA, int Diag, Allocation Ap, Allocation X, int incX)

DTPMV performs one of the matrix-vector operations x := A*x or x := A**T*x Details: http://www.netlib.org/lapack/explore-html/dc/dcd/dtpmv_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'. k = 0 for i in range(0, n): for j in range(i, n): b[k++] = a[i, j]

Parameters
Uplo Specifies whether the matrix is an upper or lower triangular matrix.
TransA The type of transpose applied to matrix A.
Diag Specifies whether or not A is unit triangular.
Ap The input allocation contains packed matrix A, supported elements type F64(RenderScript).
X The input allocation contains vector x, supported elements type F64(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.

public void DTPSV (int Uplo, int TransA, int Diag, Allocation Ap, Allocation X, int incX)

DTPSV solves one of the systems of equations A*x = b or A**T*x = b Details: http://www.netlib.org/lapack/explore-html/d9/d84/dtpsv_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'. k = 0 for i in range(0, n): for j in range(i, n): b[k++] = a[i, j]

Parameters
Uplo Specifies whether the matrix is an upper or lower triangular matrix.
TransA The type of transpose applied to matrix A.
Diag Specifies whether or not A is unit triangular.
Ap The input allocation contains packed matrix A, supported elements type F64(RenderScript).
X The input allocation contains vector x, supported elements type F64(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.

public void DTRMM (int Side, int Uplo, int TransA, int Diag, double alpha, Allocation A, Allocation B)

DTRMM performs one of the matrix-matrix operations B := alpha*op(A)*B or B := alpha*B*op(A) op(A) is one of op(A) = A or op(A) = A**T Details: http://www.netlib.org/lapack/explore-html/dd/d19/dtrmm_8f.html

Parameters
Side Specifies whether the symmetric matrix A appears on the left or right.
Uplo Specifies whether matrix A is upper or lower triangular.
TransA The type of transpose applied to matrix A.
Diag Specifies whether or not A is unit triangular.
alpha The scalar alpha.
A The input allocation contains matrix A, supported elements type F64(RenderScript).
B The input allocation contains matrix B, supported elements type F64(RenderScript).

public void DTRMV (int Uplo, int TransA, int Diag, Allocation A, Allocation X, int incX)

DTRMV performs one of the matrix-vector operations x := A*x or x := A**T*x Details: http://www.netlib.org/lapack/explore-html/dc/d7e/dtrmv_8f.html

Parameters
Uplo Specifies whether the matrix is an upper or lower triangular matrix.
TransA The type of transpose applied to matrix A.
Diag Specifies whether or not A is unit triangular.
A The input allocation contains matrix A, supported elements type F64(RenderScript).
X The input allocation contains vector x, supported elements type F64(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.

public void DTRSM (int Side, int Uplo, int TransA, int Diag, double alpha, Allocation A, Allocation B)

DTRSM solves one of the matrix equations op(A)*X := alpha*B or X*op(A) := alpha*B op(A) is one of op(A) = A or op(A) = A**T Details: http://www.netlib.org/lapack/explore-html/de/da7/dtrsm_8f.html

Parameters
Side Specifies whether the symmetric matrix A appears on the left or right.
Uplo Specifies whether matrix A is upper or lower triangular.
TransA The type of transpose applied to matrix A.
Diag Specifies whether or not A is unit triangular.
alpha The scalar alpha.
A The input allocation contains matrix A, supported elements type F64(RenderScript).
B The input allocation contains matrix B, supported elements type F64(RenderScript).

public void DTRSV (int Uplo, int TransA, int Diag, Allocation A, Allocation X, int incX)

DTRSV solves one of the systems of equations A*x = b or A**T*x = b Details: http://www.netlib.org/lapack/explore-html/d6/d96/dtrsv_8f.html

Parameters
Uplo Specifies whether the matrix is an upper or lower triangular matrix.
TransA The type of transpose applied to matrix A.
Diag Specifies whether or not A is unit triangular.
A The input allocation contains matrix A, supported elements type F64(RenderScript).
X The input allocation contains vector x, supported elements type F64(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.

public void SGBMV (int TransA, int KL, int KU, float alpha, Allocation A, Allocation X, int incX, float beta, Allocation Y, int incY)

SGBMV performs one of the matrix-vector operations y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d6/d46/sgbmv_8f.html Note: For a M*N matrix, the input Allocation should also be of size M*N (dimY = M, dimX = N), but only the region M*(KL+KU+1) will be referenced. The following subroutine can is an example showing how to convert the original matrix 'a' to row-based band matrix 'b'. for i in range(0, m): for j in range(max(0, i-kl), min(i+ku+1, n)): b[i, j-i+kl] = a[i, j]

Parameters
TransA The type of transpose applied to matrix A.
KL The number of sub-diagonals of the matrix A.
KU The number of super-diagonals of the matrix A.
alpha The scalar alpha.
A The input allocation contains the band matrix A, supported elements type F32(RenderScript).
X The input allocation contains vector x, supported elements type F32(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.
beta The scalar beta.
Y The input allocation contains vector y, supported elements type F32(RenderScript).
incY The increment for the elements of vector y, must be larger than zero.

public void SGEMM (int TransA, int TransB, float alpha, Allocation A, Allocation B, float beta, Allocation C)

SGEMM performs one of the matrix-matrix operations C := alpha*op(A)*op(B) + beta*C where op(X) is one of op(X) = X or op(X) = X**T Details: http://www.netlib.org/lapack/explore-html/d4/de2/sgemm_8f.html

Parameters
TransA The type of transpose applied to matrix A.
TransB The type of transpose applied to matrix B.
alpha The scalar alpha.
A The input allocation contains matrix A, supported elements type F32(RenderScript).
B The input allocation contains matrix B, supported elements type F32(RenderScript).
beta The scalar beta.
C The input allocation contains matrix C, supported elements type F32(RenderScript).

public void SGEMV (int TransA, float alpha, Allocation A, Allocation X, int incX, float beta, Allocation Y, int incY)

SGEMV performs one of the matrix-vector operations y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y Details: http://www.netlib.org/lapack/explore-html/db/d58/sgemv_8f.html

Parameters
TransA The type of transpose applied to matrix A.
alpha The scalar alpha.
A The input allocation contains matrix A, supported elements type F32(RenderScript).
X The input allocation contains vector x, supported elements type F32(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.
beta The scalar beta.
Y The input allocation contains vector y, supported elements type F32(RenderScript).
incY The increment for the elements of vector y, must be larger than zero.

public void SGER (float alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A)

SGER performs the rank 1 operation A := alpha*x*y**T + A Details: http://www.netlib.org/lapack/explore-html/db/d5c/sger_8f.html

Parameters
alpha The scalar alpha.
X The input allocation contains vector x, supported elements type F32(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.
Y The input allocation contains vector y, supported elements type F32(RenderScript).
incY The increment for the elements of vector y, must be larger than zero.
A The input allocation contains matrix A, supported elements type F32(RenderScript).

public void SSBMV (int Uplo, int K, float alpha, Allocation A, Allocation X, int incX, float beta, Allocation Y, int incY)

SSBMV performs the matrix-vector operation y := alpha*A*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d3/da1/ssbmv_8f.html Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), but only the region N*(K+1) will be referenced. The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. for i in range(0, n): for j in range(i, min(i+k+1, n)): b[i, j-i] = a[i, j]

Parameters
Uplo Specifies whether the upper or lower triangular part of the band matrix A is being supplied.
K The number of off-diagonals of the matrix A
alpha The scalar alpha.
A The input allocation contains matrix A, supported elements type F32(RenderScript).
X The input allocation contains vector x, supported elements type F32(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.
beta The scalar beta.
Y The input allocation contains vector y, supported elements type F32(RenderScript).
incY The increment for the elements of vector y, must be larger than zero.

public void SSPMV (int Uplo, float alpha, Allocation Ap, Allocation X, int incX, float beta, Allocation Y, int incY)

SSPMV performs the matrix-vector operation y := alpha*A*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d8/d68/sspmv_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'. k = 0 for i in range(0, n): for j in range(i, n): b[k++] = a[i, j]

Parameters
Uplo Specifies whether the upper or lower triangular part of the matrix A is supplied in packed form.
alpha The scalar alpha.
Ap The input allocation contains matrix A, supported elements type F32(RenderScript).
X The input allocation contains vector x, supported elements type F32(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.
beta The scalar beta.
Y The input allocation contains vector y, supported elements type F32(RenderScript).
incY The increment for the elements of vector y, must be larger than zero.

public void SSPR (int Uplo, float alpha, Allocation X, int incX, Allocation Ap)

SSPR performs the rank 1 operation A := alpha*x*x**T + A Details: http://www.netlib.org/lapack/explore-html/d2/d9b/sspr_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'. k = 0 for i in range(0, n): for j in range(i, n): b[k++] = a[i, j]

Parameters
Uplo Specifies whether the upper or lower triangular part is to be supplied in the packed form.
alpha The scalar alpha.
X The input allocation contains vector x, supported elements type F32(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.
Ap The input allocation contains matrix A, supported elements type F32(RenderScript).

public void SSPR2 (int Uplo, float alpha, Allocation X, int incX, Allocation Y, int incY, Allocation Ap)

SSPR2 performs the symmetric rank 2 operation A := alpha*x*y**T + alpha*y*x**T + A Details: http://www.netlib.org/lapack/explore-html/db/d3e/sspr2_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'. k = 0 for i in range(0, n): for j in range(i, n): b[k++] = a[i, j]

Parameters
Uplo Specifies whether the upper or lower triangular part is to be supplied in the packed form.
alpha The scalar alpha.
X The input allocation contains vector x, supported elements type F32(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.
Y The input allocation contains vector y, supported elements type F32(RenderScript).
incY The increment for the elements of vector y, must be larger than zero.
Ap The input allocation contains matrix A, supported elements type F32(RenderScript).

public void SSYMM (int Side, int Uplo, float alpha, Allocation A, Allocation B, float beta, Allocation C)

SSYMM performs one of the matrix-matrix operations C := alpha*A*B + beta*C or C := alpha*B*A + beta*C Details: http://www.netlib.org/lapack/explore-html/d7/d42/ssymm_8f.html

Parameters
Side Specifies whether the symmetric matrix A appears on the left or right.
Uplo Specifies whether the upper or lower triangular part is to be referenced.
alpha The scalar alpha.
A The input allocation contains matrix A, supported elements type F32(RenderScript).
B The input allocation contains matrix B, supported elements type F32(RenderScript).
beta The scalar beta.
C The input allocation contains matrix C, supported elements type F32(RenderScript).

public void SSYMV (int Uplo, float alpha, Allocation A, Allocation X, int incX, float beta, Allocation Y, int incY)

SSYMV performs the matrix-vector operation y := alpha*A*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d2/d94/ssymv_8f.html

Parameters
Uplo Specifies whether the upper or lower triangular part is to be referenced.
alpha The scalar alpha.
A The input allocation contains matrix A, supported elements type F32(RenderScript).
X The input allocation contains vector x, supported elements type F32(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.
beta The scalar beta.
Y The input allocation contains vector y, supported elements type F32(RenderScript).
incY The increment for the elements of vector y, must be larger than zero.

public void SSYR (int Uplo, float alpha, Allocation X, int incX, Allocation A)

SSYR performs the rank 1 operation A := alpha*x*x**T + A Details: http://www.netlib.org/lapack/explore-html/d6/dac/ssyr_8f.html

Parameters
Uplo Specifies whether the upper or lower triangular part is to be referenced.
alpha The scalar alpha.
X The input allocation contains vector x, supported elements type F32(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.
A The input allocation contains matrix A, supported elements type F32(RenderScript).

public void SSYR2 (int Uplo, float alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A)

SSYR2 performs the symmetric rank 2 operation A := alpha*x*y**T + alpha*y*x**T + A Details: http://www.netlib.org/lapack/explore-html/db/d99/ssyr2_8f.html

Parameters
Uplo Specifies whether the upper or lower triangular part is to be referenced.
alpha The scalar alpha.
X The input allocation contains vector x, supported elements type F32(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.
Y The input allocation contains vector y, supported elements type F32(RenderScript).
incY The increment for the elements of vector y, must be larger than zero.
A The input allocation contains matrix A, supported elements type F32(RenderScript).

public void SSYR2K (int Uplo, int Trans, float alpha, Allocation A, Allocation B, float beta, Allocation C)

SSYR2K performs one of the symmetric rank 2k operations C := alpha*A*B**T + alpha*B*A**T + beta*C or C := alpha*A**T*B + alpha*B**T*A + beta*C Details: http://www.netlib.org/lapack/explore-html/df/d3d/ssyr2k_8f.html

Parameters
Uplo Specifies whether the upper or lower triangular part of C is to be referenced.
Trans The type of transpose applied to the operation.
alpha The scalar alpha.
A The input allocation contains matrix A, supported elements type F32(RenderScript).
B The input allocation contains matrix B, supported elements type F32(RenderScript).
beta The scalar beta.
C The input allocation contains matrix C, supported elements type F32(RenderScript).

public void SSYRK (int Uplo, int Trans, float alpha, Allocation A, float beta, Allocation C)

SSYRK performs one of the symmetric rank k operations C := alpha*A*A**T + beta*C or C := alpha*A**T*A + beta*C Details: http://www.netlib.org/lapack/explore-html/d0/d40/ssyrk_8f.html

Parameters
Uplo Specifies whether the upper or lower triangular part of C is to be referenced.
Trans The type of transpose applied to the operation.
alpha The scalar alpha.
A The input allocation contains matrix A, supported elements type F32(RenderScript).
beta The scalar beta.
C The input allocation contains matrix C, supported elements type F32(RenderScript).

public void STBMV (int Uplo, int TransA, int Diag, int K, Allocation A, Allocation X, int incX)

STBMV performs one of the matrix-vector operations x := A*x or x := A**T*x Details: http://www.netlib.org/lapack/explore-html/d6/d7d/stbmv_8f.html Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), but only the region N*(K+1) will be referenced. The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. for i in range(0, n): for j in range(i, min(i+k+1, n)): b[i, j-i] = a[i, j]

Parameters
Uplo Specifies whether the matrix is an upper or lower triangular matrix.
TransA The type of transpose applied to matrix A.
Diag Specifies whether or not A is unit triangular.
K The number of off-diagonals of the matrix A
A The input allocation contains matrix A, supported elements type F32(RenderScript).
X The input allocation contains vector x, supported elements type F32(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.

public void STBSV (int Uplo, int TransA, int Diag, int K, Allocation A, Allocation X, int incX)

STBSV solves one of the systems of equations A*x = b or A**T*x = b Details: http://www.netlib.org/lapack/explore-html/d0/d1f/stbsv_8f.html Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), but only the region N*(K+1) will be referenced. The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. for i in range(0, n): for j in range(i, min(i+k+1, n)): b[i, j-i] = a[i, j]

Parameters
Uplo Specifies whether the matrix is an upper or lower triangular matrix.
TransA The type of transpose applied to matrix A.
Diag Specifies whether or not A is unit triangular.
K The number of off-diagonals of the matrix A
A The input allocation contains matrix A, supported elements type F32(RenderScript).
X The input allocation contains vector x, supported elements type F32(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.

public void STPMV (int Uplo, int TransA, int Diag, Allocation Ap, Allocation X, int incX)

STPMV performs one of the matrix-vector operations x := A*x or x := A**T*x Details: http://www.netlib.org/lapack/explore-html/db/db1/stpmv_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'. k = 0 for i in range(0, n): for j in range(i, n): b[k++] = a[i, j]

Parameters
Uplo Specifies whether the matrix is an upper or lower triangular matrix.
TransA The type of transpose applied to matrix A.
Diag Specifies whether or not A is unit triangular.
Ap The input allocation contains packed matrix A, supported elements type F32(RenderScript).
X The input allocation contains vector x, supported elements type F32(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.

public void STPSV (int Uplo, int TransA, int Diag, Allocation Ap, Allocation X, int incX)

STPSV solves one of the systems of equations A*x = b or A**T*x = b Details: http://www.netlib.org/lapack/explore-html/d0/d7c/stpsv_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'. k = 0 for i in range(0, n): for j in range(i, n): b[k++] = a[i, j]

Parameters
Uplo Specifies whether the matrix is an upper or lower triangular matrix.
TransA The type of transpose applied to matrix A.
Diag Specifies whether or not A is unit triangular.
Ap The input allocation contains packed matrix A, supported elements type F32(RenderScript).
X The input allocation contains vector x, supported elements type F32(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.

public void STRMM (int Side, int Uplo, int TransA, int Diag, float alpha, Allocation A, Allocation B)

STRMM performs one of the matrix-matrix operations B := alpha*op(A)*B or B := alpha*B*op(A) op(A) is one of op(A) = A or op(A) = A**T Details: http://www.netlib.org/lapack/explore-html/df/d01/strmm_8f.html

Parameters
Side Specifies whether the symmetric matrix A appears on the left or right.
Uplo Specifies whether matrix A is upper or lower triangular.
TransA The type of transpose applied to matrix A.
Diag Specifies whether or not A is unit triangular.
alpha The scalar alpha.
A The input allocation contains matrix A, supported elements type F32(RenderScript).
B The input allocation contains matrix B, supported elements type F32(RenderScript).

public void STRMV (int Uplo, int TransA, int Diag, Allocation A, Allocation X, int incX)

STRMV performs one of the matrix-vector operations x := A*x or x := A**T*x Details: http://www.netlib.org/lapack/explore-html/de/d45/strmv_8f.html

Parameters
Uplo Specifies whether the matrix is an upper or lower triangular matrix.
TransA The type of transpose applied to matrix A.
Diag Specifies whether or not A is unit triangular.
A The input allocation contains matrix A, supported elements type F32(RenderScript).
X The input allocation contains vector x, supported elements type F32(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.

public void STRSM (int Side, int Uplo, int TransA, int Diag, float alpha, Allocation A, Allocation B)

STRSM solves one of the matrix equations op(A)*X := alpha*B or X*op(A) := alpha*B op(A) is one of op(A) = A or op(A) = A**T Details: http://www.netlib.org/lapack/explore-html/d2/d8b/strsm_8f.html

Parameters
Side Specifies whether the symmetric matrix A appears on the left or right.
Uplo Specifies whether matrix A is upper or lower triangular.
TransA The type of transpose applied to matrix A.
Diag Specifies whether or not A is unit triangular.
alpha The scalar alpha.
A The input allocation contains matrix A, supported elements type F32(RenderScript).
B The input allocation contains matrix B, supported elements type F32(RenderScript).

public void STRSV (int Uplo, int TransA, int Diag, Allocation A, Allocation X, int incX)

STRSV solves one of the systems of equations A*x = b or A**T*x = b Details: http://www.netlib.org/lapack/explore-html/d0/d2a/strsv_8f.html

Parameters
Uplo Specifies whether the matrix is an upper or lower triangular matrix.
TransA The type of transpose applied to matrix A.
Diag Specifies whether or not A is unit triangular.
A The input allocation contains matrix A, supported elements type F32(RenderScript).
X The input allocation contains vector x, supported elements type F32(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.

public void ZGBMV (int TransA, int KL, int KU, Double2 alpha, Allocation A, Allocation X, int incX, Double2 beta, Allocation Y, int incY)

ZGBMV performs one of the matrix-vector operations y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y or y := alpha*A**H*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d9/d46/zgbmv_8f.html Note: For a M*N matrix, the input Allocation should also be of size M*N (dimY = M, dimX = N), but only the region M*(KL+KU+1) will be referenced. The following subroutine can is an example showing how to convert the original matrix 'a' to row-based band matrix 'b'. for i in range(0, m): for j in range(max(0, i-kl), min(i+ku+1, n)): b[i, j-i+kl] = a[i, j]

Parameters
TransA The type of transpose applied to matrix A.
KL The number of sub-diagonals of the matrix A.
KU The number of super-diagonals of the matrix A.
alpha The scalar alpha.
A The input allocation contains the band matrix A, supported elements type F64_2(RenderScript).
X The input allocation contains vector x, supported elements type F64_2(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.
beta The scalar beta.
Y The input allocation contains vector y, supported elements type F64_2(RenderScript).
incY The increment for the elements of vector y, must be larger than zero.

public void ZGEMM (int TransA, int TransB, Double2 alpha, Allocation A, Allocation B, Double2 beta, Allocation C)

ZGEMM performs one of the matrix-matrix operations C := alpha*op(A)*op(B) + beta*C where op(X) is one of op(X) = X or op(X) = X**T or op(X) = X**H Details: http://www.netlib.org/lapack/explore-html/d7/d76/zgemm_8f.html

Parameters
TransA The type of transpose applied to matrix A.
TransB The type of transpose applied to matrix B.
alpha The scalar alpha.
A The input allocation contains matrix A, supported elements type {@link Element#F64_2
B The input allocation contains matrix B, supported elements type {@link Element#F64_2
beta The scalar beta.
C The input allocation contains matrix C, supported elements type {@link Element#F64_2

public void ZGEMV (int TransA, Double2 alpha, Allocation A, Allocation X, int incX, Double2 beta, Allocation Y, int incY)

ZGEMV performs one of the matrix-vector operations y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y or y := alpha*A**H*x + beta*y Details: http://www.netlib.org/lapack/explore-html/db/d40/zgemv_8f.html

Parameters
TransA The type of transpose applied to matrix A.
alpha The scalar alpha.
A The input allocation contains matrix A, supported elements type F64_2(RenderScript).
X The input allocation contains vector x, supported elements type F64_2(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.
beta The scalar beta.
Y The input allocation contains vector y, supported elements type F64_2(RenderScript).
incY The increment for the elements of vector y, must be larger than zero.

public void ZGERC (Double2 alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A)

ZGERC performs the rank 1 operation A := alpha*x*y**H + A Details: http://www.netlib.org/lapack/explore-html/d3/dad/zgerc_8f.html

Parameters
alpha The scalar alpha.
X The input allocation contains vector x, supported elements type F64_2(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.
Y The input allocation contains vector y, supported elements type F64_2(RenderScript).
incY The increment for the elements of vector y, must be larger than zero.
A The input allocation contains matrix A, supported elements type F64_2(RenderScript).

public void ZGERU (Double2 alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A)

ZGERU performs the rank 1 operation A := alpha*x*y**T + A Details: http://www.netlib.org/lapack/explore-html/d7/d12/zgeru_8f.html

Parameters
alpha The scalar alpha.
X The input allocation contains vector x, supported elements type F64_2(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.
Y The input allocation contains vector y, supported elements type F64_2(RenderScript).
incY The increment for the elements of vector y, must be larger than zero.
A The input allocation contains matrix A, supported elements type F64_2(RenderScript).

public void ZHBMV (int Uplo, int K, Double2 alpha, Allocation A, Allocation X, int incX, Double2 beta, Allocation Y, int incY)

ZHBMV performs the matrix-vector operation y := alpha*A*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d3/d1a/zhbmv_8f.html Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), but only the region N*(K+1) will be referenced. The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. for i in range(0, n): for j in range(i, min(i+k+1, n)): b[i, j-i] = a[i, j]

Parameters
Uplo Specifies whether the upper or lower triangular part of the band matrix A is being supplied.
K The number of off-diagonals of the matrix A
alpha The scalar alpha.
A The input allocation contains matrix A, supported elements type F64_2(RenderScript).
X The input allocation contains vector x, supported elements type F64_2(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.
beta The scalar beta.
Y The input allocation contains vector y, supported elements type F64_2(RenderScript).
incY The increment for the elements of vector y, must be larger than zero.

public void ZHEMM (int Side, int Uplo, Double2 alpha, Allocation A, Allocation B, Double2 beta, Allocation C)

ZHEMM performs one of the matrix-matrix operations C := alpha*A*B + beta*C or C := alpha*B*A + beta*C Details: http://www.netlib.org/lapack/explore-html/d6/d3e/zhemm_8f.html

Parameters
Side Specifies whether the symmetric matrix A appears on the left or right.
Uplo Specifies whether the upper or lower triangular part is to be referenced.
alpha The scalar alpha.
A The input allocation contains matrix A, supported elements type F64_2(RenderScript).
B The input allocation contains matrix B, supported elements type F64_2(RenderScript).
beta The scalar beta.
C The input allocation contains matrix C, supported elements type F64_2(RenderScript).

public void ZHEMV (int Uplo, Double2 alpha, Allocation A, Allocation X, int incX, Double2 beta, Allocation Y, int incY)

ZHEMV performs the matrix-vector operation y := alpha*A*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d0/ddd/zhemv_8f.html

Parameters
Uplo Specifies whether the upper or lower triangular part is to be referenced.
alpha The scalar alpha.
A The input allocation contains matrix A, supported elements type F64_2(RenderScript).
X The input allocation contains vector x, supported elements type F64_2(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.
beta The scalar beta.
Y The input allocation contains vector y, supported elements type F64_2(RenderScript).
incY The increment for the elements of vector y, must be larger than zero.

public void ZHER (int Uplo, double alpha, Allocation X, int incX, Allocation A)

ZHER performs the rank 1 operation A := alpha*x*x**H + A Details: http://www.netlib.org/lapack/explore-html/de/d0e/zher_8f.html

Parameters
Uplo Specifies whether the upper or lower triangular part is to be referenced.
alpha The scalar alpha.
X The input allocation contains vector x, supported elements type F64_2(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.
A The input allocation contains matrix A, supported elements type F64_2(RenderScript).

public void ZHER2 (int Uplo, Double2 alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A)

ZHER2 performs the symmetric rank 2 operation A := alpha*x*y**H + alpha*y*x**H + A Details: http://www.netlib.org/lapack/explore-html/da/d8a/zher2_8f.html

Parameters
Uplo Specifies whether the upper or lower triangular part is to be referenced.
alpha The scalar alpha.
X The input allocation contains vector x, supported elements type F64_2(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.
Y The input allocation contains vector y, supported elements type F64_2(RenderScript).
incY The increment for the elements of vector y, must be larger than zero.
A The input allocation contains matrix A, supported elements type F64_2(RenderScript).

public void ZHER2K (int Uplo, int Trans, Double2 alpha, Allocation A, Allocation B, double beta, Allocation C)

ZHER2K performs one of the hermitian rank 2k operations C := alpha*A*B**H + conjg( alpha )*B*A**H + beta*C or C := alpha*A**H*B + conjg( alpha )*B**H*A + beta*C Details: http://www.netlib.org/lapack/explore-html/d7/dfa/zher2k_8f.html

Parameters
Uplo Specifies whether the upper or lower triangular part of C is to be referenced.
Trans The type of transpose applied to the operation.
alpha The scalar alpha.
A The input allocation contains matrix A, supported elements type F64_2(RenderScript).
B The input allocation contains matrix B, supported elements type F64_2(RenderScript).
beta The scalar beta.
C The input allocation contains matrix C, supported elements type F64_2(RenderScript).

public void ZHERK (int Uplo, int Trans, double alpha, Allocation A, double beta, Allocation C)

ZHERK performs one of the hermitian rank k operations C := alpha*A*A**H + beta*C or C := alpha*A**H*A + beta*C Details: http://www.netlib.org/lapack/explore-html/d1/db1/zherk_8f.html

Parameters
Uplo Specifies whether the upper or lower triangular part of C is to be referenced.
Trans The type of transpose applied to the operation.
alpha The scalar alpha.
A The input allocation contains matrix A, supported elements type F64_2(RenderScript).
beta The scalar beta.
C The input allocation contains matrix C, supported elements type F64_2(RenderScript).

public void ZHPMV (int Uplo, Double2 alpha, Allocation Ap, Allocation X, int incX, Double2 beta, Allocation Y, int incY)

ZHPMV performs the matrix-vector operation y := alpha*A*x + beta*y Details: http://www.netlib.org/lapack/explore-html/d0/d60/zhpmv_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'. k = 0 for i in range(0, n): for j in range(i, n): b[k++] = a[i, j]

Parameters
Uplo Specifies whether the upper or lower triangular part of the matrix A is supplied in packed form.
alpha The scalar alpha.
Ap The input allocation contains matrix A, supported elements type F64_2(RenderScript).
X The input allocation contains vector x, supported elements type F64_2(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.
beta The scalar beta.
Y The input allocation contains vector y, supported elements type F64_2(RenderScript).
incY The increment for the elements of vector y, must be larger than zero.

public void ZHPR (int Uplo, double alpha, Allocation X, int incX, Allocation Ap)

ZHPR performs the rank 1 operation A := alpha*x*x**H + A Details: http://www.netlib.org/lapack/explore-html/de/de1/zhpr_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'. k = 0 for i in range(0, n): for j in range(i, n): b[k++] = a[i, j]

Parameters
Uplo Specifies whether the upper or lower triangular part is to be supplied in the packed form.
alpha The scalar alpha.
X The input allocation contains vector x, supported elements type F64_2(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.
Ap The input allocation contains matrix A, supported elements type F64_2(RenderScript).

public void ZHPR2 (int Uplo, Double2 alpha, Allocation X, int incX, Allocation Y, int incY, Allocation Ap)

ZHPR2 performs the symmetric rank 2 operation A := alpha*x*y**H + alpha*y*x**H + A Details: http://www.netlib.org/lapack/explore-html/d5/d52/zhpr2_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'. k = 0 for i in range(0, n): for j in range(i, n): b[k++] = a[i, j]

Parameters
Uplo Specifies whether the upper or lower triangular part is to be supplied in the packed form.
alpha The scalar alpha.
X The input allocation contains vector x, supported elements type F64_2(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.
Y The input allocation contains vector y, supported elements type F64_2(RenderScript).
incY The increment for the elements of vector y, must be larger than zero.
Ap The input allocation contains matrix A, supported elements type F64_2(RenderScript).

public void ZSYMM (int Side, int Uplo, Double2 alpha, Allocation A, Allocation B, Double2 beta, Allocation C)

ZSYMM performs one of the matrix-matrix operations C := alpha*A*B + beta*C or C := alpha*B*A + beta*C Details: http://www.netlib.org/lapack/explore-html/df/d51/zsymm_8f.html

Parameters
Side Specifies whether the symmetric matrix A appears on the left or right.
Uplo Specifies whether the upper or lower triangular part is to be referenced.
alpha The scalar alpha.
A The input allocation contains matrix A, supported elements type F64_2(RenderScript).
B The input allocation contains matrix B, supported elements type F64_2(RenderScript).
beta The scalar beta.
C The input allocation contains matrix C, supported elements type F64_2(RenderScript).

public void ZSYR2K (int Uplo, int Trans, Double2 alpha, Allocation A, Allocation B, Double2 beta, Allocation C)

ZSYR2K performs one of the symmetric rank 2k operations C := alpha*A*B**T + alpha*B*A**T + beta*C or C := alpha*A**T*B + alpha*B**T*A + beta*C Details: http://www.netlib.org/lapack/explore-html/df/d20/zsyr2k_8f.html

Parameters
Uplo Specifies whether the upper or lower triangular part of C is to be referenced.
Trans The type of transpose applied to the operation.
alpha The scalar alpha.
A The input allocation contains matrix A, supported elements type F64_2(RenderScript).
B The input allocation contains matrix B, supported elements type F64_2(RenderScript).
beta The scalar beta.
C The input allocation contains matrix C, supported elements type F64_2(RenderScript).

public void ZSYRK (int Uplo, int Trans, Double2 alpha, Allocation A, Double2 beta, Allocation C)

ZSYRK performs one of the symmetric rank k operations C := alpha*A*A**T + beta*C or C := alpha*A**T*A + beta*C Details: http://www.netlib.org/lapack/explore-html/de/d54/zsyrk_8f.html

Parameters
Uplo Specifies whether the upper or lower triangular part of C is to be referenced.
Trans The type of transpose applied to the operation.
alpha The scalar alpha.
A The input allocation contains matrix A, supported elements type F64_2(RenderScript).
beta The scalar beta.
C The input allocation contains matrix C, supported elements type F64_2(RenderScript).

public void ZTBMV (int Uplo, int TransA, int Diag, int K, Allocation A, Allocation X, int incX)

ZTBMV performs one of the matrix-vector operations x := A*x or x := A**T*x or x := A**H*x Details: http://www.netlib.org/lapack/explore-html/d3/d39/ztbmv_8f.html Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), but only the region N*(K+1) will be referenced. The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. for i in range(0, n): for j in range(i, min(i+k+1, n)): b[i, j-i] = a[i, j]

Parameters
Uplo Specifies whether the matrix is an upper or lower triangular matrix.
TransA The type of transpose applied to matrix A.
Diag Specifies whether or not A is unit triangular.
K The number of off-diagonals of the matrix A
A The input allocation contains matrix A, supported elements type F64_2(RenderScript).
X The input allocation contains vector x, supported elements type F64_2(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.

public void ZTBSV (int Uplo, int TransA, int Diag, int K, Allocation A, Allocation X, int incX)

ZTBSV solves one of the systems of equations A*x = b or A**T*x = b or A**H*x = b Details: http://www.netlib.org/lapack/explore-html/d4/d5a/ztbsv_8f.html Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), but only the region N*(K+1) will be referenced. The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. for i in range(0, n): for j in range(i, min(i+k+1, n)): b[i, j-i] = a[i, j]

Parameters
Uplo Specifies whether the matrix is an upper or lower triangular matrix.
TransA The type of transpose applied to matrix A.
Diag Specifies whether or not A is unit triangular.
K The number of off-diagonals of the matrix A
A The input allocation contains matrix A, supported elements type F64_2(RenderScript).
X The input allocation contains vector x, supported elements type F64_2(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.

public void ZTPMV (int Uplo, int TransA, int Diag, Allocation Ap, Allocation X, int incX)

ZTPMV performs one of the matrix-vector operations x := A*x or x := A**T*x or x := A**H*x Details: http://www.netlib.org/lapack/explore-html/d2/d9e/ztpmv_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'. k = 0 for i in range(0, n): for j in range(i, n): b[k++] = a[i, j]

Parameters
Uplo Specifies whether the matrix is an upper or lower triangular matrix.
TransA The type of transpose applied to matrix A.
Diag Specifies whether or not A is unit triangular.
Ap The input allocation contains packed matrix A, supported elements type F64_2(RenderScript).
X The input allocation contains vector x, supported elements type F64_2(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.

public void ZTPSV (int Uplo, int TransA, int Diag, Allocation Ap, Allocation X, int incX)

ZTPSV solves one of the systems of equations A*x = b or A**T*x = b or A**H*x = b Details: http://www.netlib.org/lapack/explore-html/da/d57/ztpsv_8f.html Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'. k = 0 for i in range(0, n): for j in range(i, n): b[k++] = a[i, j]

Parameters
Uplo Specifies whether the matrix is an upper or lower triangular matrix.
TransA The type of transpose applied to matrix A.
Diag Specifies whether or not A is unit triangular.
Ap The input allocation contains packed matrix A, supported elements type F64_2(RenderScript).
X The input allocation contains vector x, supported elements type F64_2(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.

public void ZTRMM (int Side, int Uplo, int TransA, int Diag, Double2 alpha, Allocation A, Allocation B)

ZTRMM performs one of the matrix-matrix operations B := alpha*op(A)*B or B := alpha*B*op(A) op(A) is one of op(A) = A or op(A) = A**T or op(A) = A**H Details: http://www.netlib.org/lapack/explore-html/d8/de1/ztrmm_8f.html

Parameters
Side Specifies whether the symmetric matrix A appears on the left or right.
Uplo Specifies whether matrix A is upper or lower triangular.
TransA The type of transpose applied to matrix A.
Diag Specifies whether or not A is unit triangular.
alpha The scalar alpha.
A The input allocation contains matrix A, supported elements type F64_2(RenderScript).
B The input allocation contains matrix B, supported elements type F64_2(RenderScript).

public void ZTRMV (int Uplo, int TransA, int Diag, Allocation A, Allocation X, int incX)

ZTRMV performs one of the matrix-vector operations x := A*x or x := A**T*x or x := A**H*x Details: http://www.netlib.org/lapack/explore-html/d0/dd1/ztrmv_8f.html

Parameters
Uplo Specifies whether the matrix is an upper or lower triangular matrix.
TransA The type of transpose applied to matrix A.
Diag Specifies whether or not A is unit triangular.
A The input allocation contains matrix A, supported elements type F64_2(RenderScript).
X The input allocation contains vector x, supported elements type F64_2(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.

public void ZTRSM (int Side, int Uplo, int TransA, int Diag, Double2 alpha, Allocation A, Allocation B)

ZTRSM solves one of the matrix equations op(A)*X := alpha*B or X*op(A) := alpha*B op(A) is one of op(A) = A or op(A) = A**T or op(A) = A**H Details: http://www.netlib.org/lapack/explore-html/d1/d39/ztrsm_8f.html

Parameters
Side Specifies whether the symmetric matrix A appears on the left or right.
Uplo Specifies whether matrix A is upper or lower triangular.
TransA The type of transpose applied to matrix A.
Diag Specifies whether or not A is unit triangular.
alpha The scalar alpha.
A The input allocation contains matrix A, supported elements type F64_2(RenderScript).
B The input allocation contains matrix B, supported elements type F64_2(RenderScript).

public void ZTRSV (int Uplo, int TransA, int Diag, Allocation A, Allocation X, int incX)

ZTRSV solves one of the systems of equations A*x = b or A**T*x = b or A**H*x = b Details: http://www.netlib.org/lapack/explore-html/d1/d2f/ztrsv_8f.html

Parameters
Uplo Specifies whether the matrix is an upper or lower triangular matrix.
TransA The type of transpose applied to matrix A.
Diag Specifies whether or not A is unit triangular.
A The input allocation contains matrix A, supported elements type F64_2(RenderScript).
X The input allocation contains vector x, supported elements type F64_2(RenderScript).
incX The increment for the elements of vector x, must be larger than zero.

public static ScriptIntrinsicBLAS create (RenderScript rs)

Create an intrinsic to access BLAS subroutines.

Parameters
rs The RenderScript context
Returns
  • ScriptIntrinsicBLAS